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BBN VISER at TRECVID 2014 

• Participated in both MED and MER tasks 

• Made submissions for all event/training/system 
conditions (noPRF) 

• Continue to build and improve upon core system work 
from previous years in TRECVID 
– Multi-modal feature extraction 

– Max-margin classification and multi-stage fusion 

– Fast metadata generation and reduced memory footprint 

– Robust and fast event model training and search 

• Major area of focus in 2014: 
– MG, EQG, and ES modules optimization 

– Semantic Query Generation 

– Semantic Features 
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Semantics for MED and MER 

• Increasing necessity in TRECVID for semantic 
understanding of video 

– MER:                                                                                        
Semantic explanation of event detection 

– MED 000Ex and SQ:                                                                  
Video event detection from user-defined text query only; no 
positive examples 

• Key building blocks for both MED and MER:  

– Robust multi-modal low-level features 

– Comprehensive concepts coverage 
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Overview 

• Semantic Query Generation 

• Language extraction: 

– Speech and video text 

• Audio-visual concepts: 

– Deep Learning 

– In-domain detectors 

• System Optimization 

• TRECVID 14 results: 

– MED 

– MER 
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Semantic Query Generation 
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Semantic Query Generation 

• Translation of the user-defined event query (name) 
into the system representation 

• In 010Ex and 100Ex training conditions, the semantic 
query is augmented/modified based on event model 
training 
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Semantic Query Generation 

• Generate Semantic Query automatically from free-form 
description of an event: 

– Use INDRI Document Retrieval System (OTS)* for mining Gigapedia 
and Wikepedia articles 

– Stopwords removal and lemmatization 

– Relevant vectorization based on ranked retrieval of words using TF 
measure 

• Key points  

– Robust hierarchical model and inference net approach for retrieval 

– Powerful query modulations (Stemmed, AND, OR, Ordered etc.) 

– Scalable and Distributed retrieval 

 
* [Metzler and Croft ’04] 
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Event Query Expansion and Projection 

• Each modality has its own vocabulary 
– Need to express the lemmatized event query (𝑄) in each 

vocabulary (𝑉) 

• Projection procedure:  
For each word 𝑣 in 𝑉, do 

If 𝑣 ∈ 𝑄, then score 𝑣 = 1 End 
If 𝑣 ∉ 𝑄, then  
 For each 𝑤 ∈ 𝑄, do  
  Expand 𝑤 into 𝑊 = {𝑤1, … , 𝑤𝑘} using 
  Gigaword*. Then, 

  For each 𝑤𝑘 in 𝑊, do 
  score 𝑣 += sim(𝑣, 𝑤𝑘) 

 End 
  End 
 End 
End 
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* D. Graff, Junbo Kong, K. Chen, K. Maeda, “English Gigaword Third Edition,” Linguistic Data Consortium, Philadelphia, 2007 



Language Extraction 
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Combined ASR and OCR pipelines 

© Raytheon BBN Technologies 2014 – All Rights Reserved 10 

Wu et al. ICASSP 2014 



Speech 
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Ng. et al. 2012 



Speech (cont’d) 
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Video Text 
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Jain et al. 2014, Peng et al. 2011 



Language Content Frequency 

• Keyword detections are usually precise 

• Only 1/3 of the data has relevant speech, and even less 
has video text 

• Relevant speech and text content in web video is too 
sparse… 
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Deep Learning 

© Raytheon BBN Technologies 2014 – All Rights Reserved 15 



Deep Learning 

• DCNN features trained on the ILSVRC dataset 

• 8-layer DCNN on 1.2 million annotated images (GPU) 

• Output layer as 1,000 dimensional semantic feature 

• Last convolutional layers (fc6, fc7) as 4,096 dimensional 
mid-level feature for 010Ex/100Ex 

• Strong performance (very close to low-level and 
semantic features) 
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Video Adaptation of ImageNet DCNN 

• ImageNet DCNN output layer: 1,000 concept detectors 

• Video adaptation: 

– First layer takes a 224x224x3 input image and filters it with 
96 11x11x3 filters.  

• Instead of rescaling every video frames, apply the 96 filters on 10 
224x224x3 rescaled sub-windows from the original video frames  

– Frame-level detection scores pooled into a single detection 
score for each concept 

– Spatial adaptation via spatial pyramids (SP) pooling scheme 
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Temporal Pooling Spatial Pooling Dimensions MAP MR0 AUC 

Maximum SP1 1,000 0.2720 0.4291 0.9345 

Average SP1 1,000 0.2735 0.4306 0.9344 

Average SP8 8,000 0.2854 0.4244 0.9369 



Audio-visual Concepts 
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In-domain Concept Discovery 

• Start with in-domain data:  

– MED research collection 

• Minimized domain mismatch, but no concept 
annotation 

• Available short text summaries in judgment files 

• Discover concept labels from natural language snippets 

– Efficient to collect: 28x faster than annotating fixed concept 
ontology 

– No predefined constraints on concept vocabulary (good for 
ad-hoc) 
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Weakly Supervised Concepts (WSC) 

• Natural language pre-processing and phrase discovery with 
Minimum Description Length (MDL) 

• Leverage existing MED infrastructure and extracted concept 
labels to train concept detectors 

• Concept selection via cross-validation 

• 1,800 concepts discovered from research set and Youtube 
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Examples of Top Concepts Detected 

21 
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WSC Concept Flexibility 

• Can be trained on top of any features/modalities 
already present in the traditional MED infrastructure 

• Can be trained with weakly annotated web data 

• Can utilize visual and audio features with the same 
discovered labels, as well as multi-modal detectors 

• Weak annotations only contain most relevant 
information to summarize video 
– Detectors capture relevant video content, not every instance 

of an object 

• No distinction between objects/scenes/actions or word 
senses 
– Training process is robust enough to automatically determine 

best modality/most common sense 
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• Video-level training, but segment-level detection 
– Apply detectors on features extracted from video segment 

excerpts 
– Enables rough temporal localization 

• Sliding window approach can improve temporal resolution (~10s) 

Temporal Concept Localization (Recounting) 
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System Optimization 
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Non-Linear Kernel Approximations 
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• Non-linear SVMs more powerful than linear SVMs 

• Non-linear SVMs much more expensive at test time! 

– Linear SVM: single dot product 
 

– Non-linear SVM: dot product for all margin points 
On average, there are 1,200 margin points for 5,000 training videos 

 

 

 

 
Kernel Type MAP 

Test Time 
(sec/100 videos) 

Linear 0.2451 0.08 

Intersect (Non-Linear) 0.3071 96.0 

Linear vs. non-linear SVM for a semantic feature (100Ex) 

𝑠𝑖 = 𝒘𝑇𝒇𝑖 

𝑠𝑖 =  𝑎𝑗𝑦𝑗𝐾(𝒇𝑖 , 𝒇𝑗)𝑗   



Non-Linear Kernel Approximations 

• Certain non-linear kernels can be approximated with a 
linear feature mapping [Vedaldi2010] 

– Homogenous, additive kernels: 𝜒2, Intersect, Hellinger’s 

– Projection from ℝ𝑛 → ℝ𝑘𝑛, where 𝑘 ≤ 5 

– Technique based on Fourier sampling theorem 

• After mapping, a standard linear SVM can be used 
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Kernel Type MAP 
Test Time 

(sec/1000 videos) 

Linear 0.2451 0.08 

Intersect (Non-Linear) 0.3071 96.0 

Approx. Intersect (Linear) 0.3059 0.40 

Linear vs. non-linear vs. approximation SVM 
for a semantic feature (100Ex) 



Feature Compression 

• Up to this year: 

– All features stored in floating-point format (4Bytes/dimension) 

• Is floating-point precision necessary? 

– Answer: Not really 

– Full precision feature vectors can be compressed and stored as 
unsigned char values (1Byte/dimension) 

 

 

 

– At EGQ and ES time, convert back to float and rescale 

– I/O time reduced by a factor of 4 w/o significant loss in 
performance 

– Total size of metadata store: ~100GB for 2T of videos! 
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𝒇uchar = [𝑎𝒇float + 𝑏], where  
𝑎 =

255

max 𝒇float −min (𝒇float)

𝑏 =
255 min (𝒇float)

min 𝒇float −max (𝒇float)

  

 



2013 vs. 2014: Metadata Store Comparison 

• 2013 system: 
– Metadata generation takes over a month for 100,000 videos on a cluster of 

computers 

• 2014 system: 
– Metadata generation takes around 10 days for 200,000 videos on the same 

cluster of computer 
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Features Comparison 

2013 System 2014 System 

Feature Type Counts Total Size per Video (KB) Counts Total Size per Video (KB) 

Appearance 2 2,097 1 97 

Color 1    2,097 1 65 

Motion 3 6,291 1 100 

Audio 3 655 1 46 

Deep Learning 0 N/A 2 26 

Semantic  6 6 9 24 

Language 2 176 2 28 

SUM 17 11,322 17 386 



TRECVID 14 Results 
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MED Performance 
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Pre-specified 

Ad Hoc 

  MAP MR0 

100Ex 29.8% 56.3% 

010Ex 18.0% 41.7% 

000Ex 5.7% 24.3% 

SQ 5.3% 20.3% 

  MAP MR0 

100Ex 22.6% 46.9% 

010Ex 10.9% 33.3% 

000Ex 3.7% 14.7% 

SQ 3.1% 11.7% 

• Consistent pre-specified and ad hoc performance 
– Our in-domain and deep learning concepts are event-independent and 

generalize well to different event queries 

• Strong overall performance in all system conditions 



Running Times 

Event Query (Median Processing Time) 
Single COTS machine 

SQ 3.5 min 

000Ex 1.4 min 

010Ex 7.7 min 

100Ex 28.3 min 

• One of the fastest systems for SQ, EQG, ES while 
maintaining strong performance 

• Metadata generation takes only 0.027 hours per hour 
of video (i.e. 1/35 of the playback time) 
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Event Search (Median Processing Time) 
Single COTS machine 

SQ 1.9 min 

000Ex 1.9 min 

010Ex 1.8 min 

100Ex 1.5 min 



MER Approach 

• Detect concept instances from various modalities 

• Aggregate detections by modality, based on the initial 
event-specific semantic query 

• Generate a human-readable recounting containing 
itemized detections along with confidence and 
relevance information 
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MER Results 

• 5 human judges 

• Query Conciseness:  

– 17 % strongly agree (highest) 

– 59 % agree votes  

• Key evidence convincing:  

– Lowest strongly disagree (7%) 

– Highest strongly agree (27%) 
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Summary 

• Reliable semantic extraction from video is key for all 
MED/MER tasks 

• Multi-modal combination of semantic information is 
especially important 

• Semantics can now match low-level feature 
performance in 010Ex/100Ex MED 

• Careful feature design leads to much smaller metadata 
store, and thus faster MG, EQG and ES 

• Nonlinear kernel approximation achieves good 
performance at reduced computational cost 
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Thank You! 
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